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each targeted to spawn in a different season. The photo-thermal conditions of 

each group were manipulated to mimic seasonal changes that initiate 

reproductive activity. Spawning occurred in all groups. Using photo-thermal 

manipulation it is possible to spawn yellow perch at different times of year 

providing multiple crops of fingerlings. 

Eggs and larvae of yellow perch were analyzed for fatty acid content. A 

feeding trial was conducted comparing experimental diets high in 

eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) to the traditional 

larval diet used by perch producers. Enriching live foods with EPA and DHA 

improved survival. Although it was high in both EPA and DHA, the emulsified

diet used resulted in lower survival than the control diet because the larvae 

did not accept it. However, yellow perch larvae may be able to be weaned 

onto manufactured diets, further improving survival.
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Chapter 1: Introduction

Yellow Perch (Perca flavecens) is a popular game fish species and a 

traditional food item in the mid-Atlantic and the Midwestern United States, as 

well as in Canadian provinces adjacent to the Great Lakes. In the 

northernmost portions of its range, the yellow perch has enjoyed popularity 

among ice-fishermen. Yellow Perch are freshwater teleosts that are cool to 

cold water adapted. They are unique to North America, and are found in 

lakes, impoundments, ponds, and slow moving rivers, and they prefer clear 

water with moderate vegetation and lots of sand or gravel bottoms (Mansueti 

1964). Yellow perch can be found in the Northwest Territories across Canada 

to Nova Scotia and from the northern US, south to Kansas, Florida, and 

Georgia. They are especially abundant in Manitoba lakes and the Great 

Lakes drainage. Yellow perch have also been successfully introduced in the 

western half of North America including Montana, Idaho, Washington, 

California, New Mexico, Texas, and British Columbia (Wynne 2002).  

Female yellow perch grow faster, reach an overall larger size and live 

longer on average than do males, but it is common to find both sexes at 

lengths of 200-290 mm and average weights of 170-300 g (Mansueti 1964). 

The world record yellow perch was 4 lbs, 3 oz, and was caught in Cross 

Wicks Creek, New Jersey, 1865. Yellow perch typically live for 7-9 years, and 

the oldest known age is 13. Larval yellow perch feed on zooplankton, 

primarily copepods and cladocerans. Juveniles quickly begin to include bigger 
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food items such as aquatic insect larvae and larval fish. By the end of their 

first growing season, perch are including small fish, crayfish, leeches, and 

snails in their diet. Adults continue to eat all of these items, but consume 

more fish as they grow larger (Brown et al., 1996). 

Yellow perch spawn fairly early in the year, beginning in late February 

or early March and continuing into May. In the northern part of their range, the 

water temperature only needs to reach 7° C to trigger spawning, but in some 

southern climates it may need to reach 12-14º C for spawning to begin 

(Dabrowski et al., 1996; Tidwell et al., 1999; Henderson et al., 2000). It is not 

the actual water temperature that is the signal to spawn, but the warming of 

the water as winter ends and spring begins. They build no nest, and there is 

no parenting of the eggs or young. Just before spawning, adult perch move to 

shallow, weedy areas of lakes or into slower protected areas of streams. At 

night females are escorted by two or more males as they move among the 

vegetation. Females drape their eggs in an accordion-like adhesive matrix 

over the vegetation and the males fertilize the eggs as they are released. A 

single female may lay 10,000-200,000 eggs, depending on her size and 

health (Mansueti 1964). The larvae hatch in about 2 weeks and larvae stay in 

open water until they are about 25 mm long, when they move into weedy 

areas near shore. Initially, larvae remain in the tributaries, but will eventually 

migrate offshore to reduce their risk from predators. When yellow perch reach 

the juvenile stage (22-25 mm) and predator avoidance has been sufficiently 

developed, they move back to the shorelines to feed on the richer, nearshore 
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food sources. Adult yellow perch generally remain in their natal river systems 

after spawning (Mansueti 1964). 

Historically, yellow perch have provided anglers the earliest and 

easiest opportunity to catch fish following the New Year. Spawning in 

February and March provided an abundance of fish and, with no restrictions, 

fishermen harvested all they wanted. Populations in Lake Michigan began to 

decline in the early 1970’s due to unrestrained harvest and habitat 

deterioration, and in 1989, creel and size limits and area closures were 

imposed. In Lake Michigan, the infamous zebra mussel may interrupt the rate 

of transfer of essential fatty acids through the food web, affecting the survival 

of yellow perch larvae (Malison 2000). The yellow perch commercial fishery 

became more important in Chesapeake Bay with the imposition of the 

American shad moratorium and strict striped bass regulations. Commercial 

fishermen catch yellow perch during their spawning runs in the upper reaches 

of streams and tributaries (Kelly 2000; Manci 2001). Yellow perch are usually 

not the sport fish most anglers try for, but they are one that many anglers 

catch. The nearshore movements of this species make yellow perch available 

to shoreline as well as boat anglers for the majority of the fishing season 

(Wynne 2002). 

Despite declines in both fish populations and commercial harvests 

within the Great Lakes, the demand for yellow perch remains strong and 

commands a relatively high value of $2.30-$3.00/lb for whole fish (Malison 

2000). Because of these favorable market characteristics, yellow perch has 
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been investigated in recent years as an alternative aquaculture species. Many 

aspects of culture including optimal growth temperature, fingerling and pond 

growout, and spawning techniques have been studied (Wallat & Tiu, 1999; 

Wallat et al.,  2001). With a preferred market size of about 125 grams for 

whole fish, successful culture is highly dependent on a consistent supply of 

lower cost fingerlings (Tompkins & Libey 1999). To date, the majority of 

fingerlings are produced by stocking hatchery- reared fry in nursery ponds 

managed initially to provide the necessary live foods for larvae, followed by 

feed training onto commercial diets (Kelly 2000). Although successful in 

producing fingerlings, this practice allows for only one crop per year. Limited 

fingerling supply and their relatively high cost (27-40% of market price) is a 

major challenge to expansion of yellow perch culture as it significantly affects 

profitability (Manci 2001; Riepe 1997). In contrast, catfish and hybrid striped 

bass fingerlings cost 6% and 12% of market price, respectively. In addition, 

inconsistent supply and high price of yellow perch fingerlings was stated as 

the number one problem currently faced by Maryland foodfish producers in a 

2001 roundtable meeting attended by over half of the state’s producers (A. M. 

Lazur, University of Maryland; personal communication, October, 2001). 

Using temperature and photoperiod manipulation to control 

reproduction has been demonstrated with many fish species including as 

European perch (Migaud et al., 2002), walleye (Malison et al., 1998), channel 

catfish (Kelly & Kohler 1996), sunfish (Mischke & Morris 1997), hybrid striped 

bass (Tate & Halfrich 1998), and a variety of salmon species (Macquarrie et 



5

al., 1978, 1979; Johnston et al., 1992). It has also been suggested as a 

promising technique for allowing the year round spawning of yellow perch 

(Ciereszko et al.,1997; Kolkovski & Dabrowski 1998). 

In an effort to increase the supply of fingerlings, Kolkovski and 

Dabrowski (1998) spawned yellow perch out of season (late summer) using 

temperature and photoperiod manipulation. They showed that 50% of females 

ovulated and larval survival through the eyed stage was 56%. They did, 

however, observe a relatively high percentage of skeletal abnormalities and 

poor swim bladder inflation in the larvae. In an additional attempt to control 

and enhance hatchery production, Dabrowski et al. (2001) successfully raised 

larvae on live foods in an indoor tank system. Fish were fed live rotifers and 

Artemia nauplii as first foods and then a variety of commercial starter diets. 

Survival ranged from 35-50% and greatest growth was observed with the 

Artemia fed treatment.

The first phase of this study expands on Kolkovski and Dabrowski’s 

earlier attempts at off-season spawning to provide continuous crops of yellow 

perch fingerlings. In addition to testing off-season spawning of broodstock 

batches to produce out-of-phase spawns through photoperiod and 

temperature control, batches of larvae were fed and maintained in the 

hatchery to be sure they developed properly to the point of accepting 

manufactured feeds. 

For the second phase of the study, a fatty acid analysis of eggs from 

both cultured and wild yellow perch was conducted. This analysis was 
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performed in order to identify differences in fatty acid composition that could 

have been caused by either the different diets of the parent fish (wild vs. 

cultured), or by the manipulation of the spawning cycle in the cultured fish. 

Based on the fatty acid profile of eggs and larvae of both wild and cultured 

yellow perch, a feeding trial was conducted comparing traditional feeding 

methods against two experimental diets: one of enriched live foods and one 

of a manufactured larval feed. The purpose of this portion of the study was to 

eliminate the need for, or reduce the associated costs of, feeding live rotifers 

and Artemia to yellow perch larvae.
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Chapter 2: Materials & Methods

The overall objectives of this project were to improve the ability of 

hatcheries to supply yellow perch fingerlings and to eliminate or reduce the 

need for (and associated costs of) feeding live foods to newly hatched yellow 

perch fry (Brown et al. 1996; Harel et al., 1999). The investigation was 

comprised of two phases. The first tested off-season spawning of broodstock 

batches to produce out-of-phase spawns through photoperiod and 

temperature manipulation. For the second phase of the study, a fatty acid 

analysis (following the methods of Folch et al., 1957) of eggs and larvae from 

cultured and wild yellow perch was conducted to determine nutritional 

differences and potential fatty acid requirements for live and artificial fry diets 

(Asturiano et al., 2000). Based on the results of those fatty acid profiles, a 

feeding trial was designed and conducted to compare growth and survival of 

yellow perch larvae fed diets with different levels of two essential fatty acids: 

eicosapentaenoic acid (EPA) and docosahexanoic acid (DHA). 

Off-Season Spawning

In October of 2002, four hundred yellow perch donated by Atlantis 

Aquaculture in Emmaus, PA (year class 2001, 18 months old, average length 

24.3 cm, average weight 453 grams) were randomly stocked into a 

recirculating system of sixteen 160 gallon tanks, divided into 4 groups. All 

tanks in the system shared the same water reservoir and treatment systems. 

These fish had been raised in an environmentally controlled recirculating 
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aquaculture facility (16 hour day length and 24°-25° C water temperature) and 

had not previously spawned. Each group of 4 tanks had independent 

environmental controls (temperature and photoperiod) and was isolated from 

the others by black plastic walls and ceilings. Upon stocking, the water 

temperature in all tanks was 18º C and the day length was 12 hours. Day 

length was computer controlled and included 30 minutes of dawn and dusk 

when light intensity was ramped up or down. All groups were acclimated at 

22º C and 14 hours of daylight to begin the experiment. Water quality was 

monitored with NH4, NO3, and pH being recorded daily and NO4, salinity, 

alkalinity and hardness being recorded weekly. Fish were fed using Sweeny 

feeders on automatic timers set to deliver approximately 10% of the average 

body weight per day (Melick Aquafeeds, Catawissa, PA; sinking feed, 45% 

protein, 16% fat, 4% fiber) and feedings occurred every 90 minutes during

daylight hours. Spawning was attempted at quarterly intervals by 

manipulating the photothermal regime of each group independently. Our 

protocol was modified from that of Kolkovski and Dabrowski (1998) in that we 

attempted to shift the photothermal regime out of phase from the natural 

(spring) yellow perch spawning period at intervals of 3, 6, and 9 months, 

instead of  a single shift of 6 months.  

Each group of fish was assigned a target season in which it was anticipated 

that spawning would occur (Table 1). The first group of fish was scheduled to 

reach proper spawning conditions in May 2003, and was named Spring 

Group. This was followed by Summer Group, Fall Group and Winter Group. 
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Each group was cycled through a series of 3 environmental conditions 

designed to mimic the seasonal changes that trigger spawning in wild yellow 

perch populations: Winter Conditions (10º, 10 hours of daylight), Spring 

Conditions (14º C, photoperiod increasing from 10 to 14 hours of daylight) 

and Summer Conditions (22º C, 14 hours of daylight). The Winter Conditions 

acted as a reproductive conditioning period during which vitellogenesis (in 

females) and spermatogenesis (in males) took place. Winter Conditions were 

initially scheduled to last for 90 days but were later extended to 120 days after 

consulting with yellow perch producer Jura Jug- Dujakovic of Atlantis 

Aquaculture Inc. (Emmaus, PA). Previous attempts at off season spawning 

had used chill periods as short as 60 days (Kolkovski & Dabrowski 1998) and 

as long as 160 days (Hokanson 1977). Spring Conditions represent the 

optimal temperature and photoperiod reported to trigger spawning in yellow 

perch. Previous research indicates that spawning is triggered in yellow perch 

when water temperatures begin to warm after a prolonged cold period and 

day length increases (Mansueti 1964). These conditions vary between the 

northern and southern portions of their range, but in indoor recirculating 

systems, spawning has occurred when the water temperature was increased 

from 10º C to 12º or 14º C and day length was increased from 10-12 hours of 

light towards 14 hours of light (Dabrowski et al., 1996). During this study, 

Spring Conditions were allowed to persist until all spawning activity had 

ceased. Summer Conditions acted as a recovery period during which the 

broodstock fed heavily and re-gained the weight lost during spawning. 
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Group Name
Winter 

Conditions
Spring 

Conditions

Duration of 
Spawning 

Activity

Females 
That 

Spawned

Spring
January 30, 

2003 - April 29, 
2003

May 8, 2003 -
July 18, 2003 42 Days 67%

Summer
April 7, 2003 -
June 27, 2003

July 6, 2003 -
September 25, 

2003
6 Days 8%

Fall
July 23, 2003 -
November 23, 

2003

December 2, 
2003 - March 

21, 2004
54 Days 54%

Winter
October 30, 

2003 -  March 8, 
2004

March 18, 2004 
- May 27, 2004 77 Days 80.56%

Spring (2)
October 30, 

2003 -  March 
20, 2004

March 30, 2004 
- May 27, 2004 35 Days 30.56%

Table 1: Calendar of Seasonal Manipulations and Spawning Activity for All 

Four Experimental Groups. 
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The temperature and day length reductions for Spring Group began on 

December 5, 2002, and it reached the Winter Conditions required for 

broodstock conditioning on January 30th, 2003. When water temperatures 

were lowered, feeders were adjusted to reduce the amount of feed delivered 

to approximately 5% of the average body weight per day. After a 90 day 

conditioning period, the water temperature was raised, and day length began 

increasing. This shift lasted for 10 days, and on May 8th, 2003, Group 1 

reached Spring Conditions of 14º C and an increasing photoperiod. After 

spawning had ceased the temperature and photoperiod were returned to 

Summer Conditions, and feeders were re-adjusted to deliver 10% of the 

average body weight per day.

The temperature and day length decline for Summer Group began on 

March 22nd, 2003, and it reached the Winter Conditions required for 

broodstock conditioning on April 7th, 2003. After a 90 day conditioning period, 

the water temperature was raised and day length began to extend. Summer 

Group reached Spring Conditions on July 6th, 2003. However, their Winter 

Conditions period had been interrupted when our chilling system failed on 

June 7th, 2003. The water temperature for this group was elevated from 10º C 

to 16º C for a period of 5 days. A smaller, portable chiller was used to lower 

the water temperature of Summer Group to 12º C for 11 days. At that time, 

the original chiller was repaired, and resumed the normal schedule for 

temperature change. 
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On July 16th, 2003 twenty yellow perch (10 males and 10 females) 

from Summer Group were implanted with 25 mg of mammalian Luteinizing 

Hormone-Releasing Hormone (LHRH) to stimulate ovulation and spermiation 

and induce spawning (Rottman, et al., 1991b) (Implants provided courtesy of 

Maryland Department of Natural Resources). Half of these fish remained in 

the recirculation system at the Horn Point Laboratory. The remaining fish 

were moved to the Manning Fish Hatchery in Cedarville State Forest, near 

Brandywine, MD and were monitored by Maryland DNR hatchery staff. By 

spawning fish at two separate locations, it was possible to rule out water 

chemistry as a cause of the egg quality problems experienced during the 

Spring Group spawn. At the Horn Point Laboratory the temperature and day

length were allowed to remain under Spring Conditions until September 25th, 

2003 to be certain that spawning was complete. At that point, Summer Group 

was returned to Summer Conditions and the feeding rate was returned to 

approximately 10 % of the average body weight per day . After a sufficient 

period for spawning to occur, the fish that were moved to Manning Fish 

Hatchery were destroyed on September 25th, 2003 in accordance with 

Maryland DNR’s protocol for using LHRH.

The temperature and day length decline in Fall Group began on July 

3rd, 2003, and it reached the Winter Conditions required for broodstock 

conditioning on July 23, 2003. Based on discussions with Jura Jug-Dujakovic  

of Atlantis Aquaculture Inc (Emmaus, PA) in September 2003, and Geoff 

Wallat at the Ohio State University Centers at Piketon “Perch School” (August 
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2003), some changes were made to the gender ratios in the groups, as well 

as the method of changing the “seasonal” environmental conditions. First, the 

male:female ratio of the yellow perch populations in Summer, Fall and Winter 

Groups was changed from 1:1 to 3:1. Also, the Winter Conditions period was 

extended from 90 days to 120 days at 10º C and 10 hours of day light. Along 

with the increased duration of the conditioning period, the rate of temperature 

change was slowed from 1 degree/day to 1 degree/4 days. The rate of day 

length change stayed the same at 2-3 minutes per day. 

On September 18th, 2003, Hurricane Isabel struck the Maryland coast, 

and the laboratory temporarily lost power. In addition to a brief temperature 

spike to 25 º C in Fall Group, the chiller was damaged and was not able to 

maintain the 10 degree temperature in Fall Group once power was restored. 

The temperature was elevated to 12° C until the chiller was repaired on 

October 16, 2003. In an effort to mitigate the elevated temperature, the Winter 

Conditions period was extended for an additional 30 days. After completing 

the conditioning period, the water temperature and day length began 

increasing. On December 2nd, 2003, Fall Group reached Spring Conditions. 

After spawning, feed delivery was returned to approximately 10% body weight 

per day and the temperature and photoperiod were returned to Summer 

Conditions. 

The temperature and day length decline for Winter Group and Spring 

Group began on September 24th, 2003. This cycle was an attempt to initiate 
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the first spawn from Winter Group and to initiate a second spawn from Spring 

Group. 

Winter Group was scheduled to reach Spring Conditions on March 8th, 

2004, but due to a chiller failure on February 20th that condition was delayed 

until March 18th, 2004. The temperature in this group climbed to 20º C for two 

days before temporary chillers could be installed to maintain the water 

temperature at 11º C while the main chiller was repaired. 

Spring Group was on the same schedule as Winter Group, but it was 

impossible to supply the tanks in that group with cold water after the chiller 

failure. The decision was made to use the limited chilling capability to 

continue with Winter Group because they had not yet spawned and it was 

believed they had a greater likelihood of success. The temperature in Spring 

Group climbed to 22° C and remained between 22° and 23° C until March 1st

when the chiller was repaired.  In an effort to mitigate the effects of the 

increased temperature, Spring Group was returned to 10° C and held there 

until March 30th when Spring Conditions were initiated. 

On April 10th, 2004, two females from Winter Group were implanted 

with 25 mg of LHRH in an effort to induce ovulation. On May 6th, 2004  six 

females and six males from Spring Group were injected with 400 IU/kg 

(Rottman et al., 1991b) of Human Chorionic Gonadotropin (HCG) in an effort 

to initiate ovulation in the females and spermiation in the males (Rottman et 

al., 1991a). 
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Larval Nutrition

Within the second phase of the study, a fatty acid analysis of eggs and 

larvae from cultured and wild yellow perch was conducted to determine 

nutritional differences and potential fatty acid requirements for live and 

artificial fry diets (Asturiano et al., 2000). Eurofins Laboratories, in Des 

Moines, IA was contracted to conduct the analysis. After collecting samples of 

eggs or larvae, they were preserved by freezing at -80° C prior to shipping. 

Samples were pooled and coded such that they were unidentifiable by 

Eurofins staff. The analysis was performed following the methods of Folch et 

al. (1957), and results were reported as percent by weight of total fatty acid 

content (Figure 1).  Based on the results of the fatty acid profiles, a feeding 

trial was designed and conducted to compare survival of yellow perch larvae 

fed diets with different levels of two essential fatty acids: eicosapentaenoic 

acid (EPA) and docosahexanoic acid (DHA). The objective of this phase of 

the study is to eliminate or reduce the need for (and associated costs of) 

feeding live foods to newly hatched yellow perch larvae (Brown et al., 1996; 

Harel et al., 1999).

A 21 day feeding trial was conducted using newly hatched larvae 

obtained from a strip spawned female in Winter Group and repeated using 

larvae obtained from a strip spawned female in Spring Group’s second 

spawning period. Four days post hatch, 2700 larvae were counted and 

divided into 9 four-liter containers. Each container was filled with 3 liters of 

fresh water and placed into a cool water bath to regulate its temperature.
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Figure 1: Percentage by weight of 4 fatty acids in samples of yellow perch 

eggs from wild and cultured sources: Aracadonic Acid, Eicosapentaenoic Acid 

(EPA), Docosahexaenoic Acid (DHA), and Linoleic Acid. 
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Using this method, the water temperature inside each container was 

maintained between 14° and 15° C. One-inch air stones were used to provide 

aeration and water quality was monitored daily with measurements of 

temperature, dissolved oxygen, pH, and total ammonia. Mortalities and debris 

were siphoned out daily and 30% of the water volume was exchanged each 

morning. 

The containers were divided into 3 groups of 3 treatments. The first 

treatment used live foods (rotifers for 6 days and 15 days of Artemia nauplii) 

that are the typical food items offered to captive yellow perch larvae (Harel et 

al., 1999; Jug-Dujakovic & VanGorder 2002).  The second treatment used the 

same live foods enriched with Aqua-Grow, an enrichment media produced by 

Advanced Bionutrition that is high in EPA and DHA. Use of Aquagrow has 

been shown to increase larval survival in other aquacultured species including 

striped bass (M. Harel, Advanced Bionutrition; personal communication, April 

29, 2004). The third treatment was fed a sequence of four artificial diets 

manufactured by Zeigler marketed as “EZ-Larvae”. This diet comes in 

emulsions of three different size ranges of particles intended to replace 

rotifers or copepods: 10-100 µm, 150-250 µm, and 300-600 µm. The fourth is 

designed to replace Artemia nauplii with particle sizes greater than 600 µm. 

Beginning one day after stocking, each container was fed 3 times daily 

at a target feed density of 2 food particles per mL. Each day, small samples of 

larvae (2-10 individuals per treatment) were examined under a dissecting 

microscope to determine the presence or absence of food in their gut. Three 
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times during the study, the total survival was calculated for each container 

and averaged within treatments to tabulate the total survival at Day 7, Day 14, 

and Day 21. An analysis of variance (ANOVA) was also conducted on the 

same data to test for significant differences in survival between treatments.  
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Chapter 3: Results

Spawning Component

Spring Group

Spring Group reached Spring Conditions on April 22, 2003. The first 

spawn occurred on the 31st day after reaching Spring Conditions (May 23nd, 

2003) and spawning continued until the 76th day (July 3rd, 2003)(Table 1). 

During this period, 67% of females in this group produced and released egg 

ribbons and males were spermiating. Despite the high rate of spawning, no 

fertilization was observed. Egg ribbons were pale white instead of the more 

typical amber color seen in wild eggs in which good fertilization has been 

observed. Ribbons spawned by fish in our system also had a looser matrix 

than wild ribbons and were often found in clumps, rather than in the typical 

concertina shape produced by yellow perch (Figure 2). Males were found to 

be spermiating during the entire spawning period. During the experiment, 11 

fish from this group died (92% survival). 

Summer Group 

Summer Group reached Spring Conditions on July 6th, 2003 (Table 1). 

However, their Winter Conditions period had been interrupted when the 

chilling system failed. The water temperature for this group was elevated from 

10º C to 18º C for a period of five days. We were able to utilize a smaller, 

temporary chiller to lower the temperature to 13º C for 20 days. At that time, 

the original chiller was repaired, and the temperature was returned to 10º C. 
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Figure 2: A yellow perch egg ribbon collected from the Severn River (left) 

compared to a healthy yellow perch egg ribbon (right). The pale, loose matrix 

of the Severn River ribbon is similar to the ribbons produced by the fish in this 

study. (photo courtesy of Steve Minkkinen, Maryland DNR Fisheries Service, 

2002)
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The Winter Conditions were extended for an extra two weeks in an effort to 

mitigate the effects of the elevated temperature. Despite this effort, only two 

females (8%) spawned in this group. The first ribbon was found 55 days after 

reaching Spring Conditions (August 30th, 2003), and the second ribbon was 

found 16 days after reaching Spring Conditions (September 5th, 2003). None 

of the 10 females that received LHRH implants spawned. Males (both 

implanted and non-implanted) were found to be spermiating during the entire 

spawning period. Between August 17th and October 2nd, 2003, there were 19 

mortalities in this group. During the entire experiment, this group experienced 

26 mortalities (74% survival). 

Fall Group

This group was also affected by the chiller failure, but it was disturbed 

earlier in its Winter Conditions, and had a longer period of recovery before 

spawning was attempted. Fall Group reached Spring Conditions on 

December 7th, 2003. The first spawn occurred on January 9th, 2004, 33 days 

after reaching Spring Conditions (Table 1). Spawning continued for 84 days 

until March 2nd, 2004. Over that period, 54% of females produced and 

released egg ribbons and males were spermiating. The male:female ratio in 

this group had been increased to 3:1, as recommended by Jug-Dujakovic at 

Atlantis Aquaculture and Geoff Wallat at the Ohio State University Centers at 

Piketon “Perch School”. Despite this, none of the egg ribbons were fertilized 

and all egg ribbons were pale and had loose matrices. Males were found to 
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be spermiating during the entire spawning period. During the experiment, 8 

fish from this group died (94% survival). 

Winter Group

Winter Group was scheduled to reach Spring Conditions on March 8th, 

2004, but due to a brief chiller failure on February 20th, this was delayed until 

March 18th, 2004 (Table 1). The temperature in this group climbed to 20º C for 

two days before temporary chillers could be installed to keep water 

temperatures at 11º C until the main chiller was repaired. Despite the use of 

temporary chillers, the fish in Winter Group began spawning before they 

reached Spring Conditions. The first spawn took place on February 20th, 2004 

when the chiller initially failed. Spawning ceased when the temporary chiller 

was activated, but began again on March 9th, 2004. Spawning activity 

continued until May 13th, 2004. Over that period 80.56% of females produced

and released egg ribbons and males were found to be spermiating during the 

entire spawning period. Five females in this group were strip-spawned 

resulting in two fertilized ribbons. Both egg ribbons developed normally and 

healthy larvae hatched 8 days post-spawn. This group also produced one 

fertilized tank-spawned ribbon. This ribbon had improved color and 

cohesiveness, and after nine days of incubation, healthy larvae hatched. The 

fertilization rate of all three ribbons was between 80-90%, and the hatching 

rate was 62% for the two stripped ribbons and 77% for the tank spawned 

ribbon. The lower hatching rate of the strip-spawned ribbons was due to a 

fungal infection that appeared on the sixth day of incubation. The infected 
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ribbons were treated with 600 ppt formalin for 15 minutes to kill the fungus. 

Winter Group had 14 mortalities over the duration of the experiment (90% 

survival). Five of the mortalities occurred within 24 hours of the temperature 

spike in February, 2004. Three more died after that event for a total of 57% of 

mortalities occurring after the temperature spike. 

Spring Group, Second Spawn

Spring Group was scheduled to reach its second period of Spring Conditions 

on March 8th, 2004, but due to the chiller failure on February 20th, this was 

delayed until March 30th, 2004 (Table 1). The temperature in this group 

climbed to 23º C and remained there for 10 days while the chiller was 

repaired. Once the chiller was repaired, Spring Group was returned to Winter 

Conditions for 31 days until March 30th, 2004 when the shift to Spring 

Conditions was initiated. The 14º C water temperature that represented the 

beginning of Spring Conditions was reached on April 9th, 2004. The first egg 

ribbon from this groups second spawning cycle appeared on April 8th, 2004 

and spawning activity continued for 34 days until the last egg ribbon was 

released on May 12th, 2004. Over that period 30.56% of females produced 

and released egg ribbons and males were found to be spermiating during the 

entire spawning period. Over the course of the entire experiment, 11 fish from 

this group died (92% survival), but 70% of this mortality occurred within or 

after the second spawning period. 
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Larval Nutrition Component

Samples of eggs and larvae, analyzed using the method of Folch et al. 

(1957) showed differences in fatty acid composition between wild and 

cultured samples (Figure 1). EPA and DHA decreased over time as eggs and 

larvae developed, and it was higher overall in the cultured samples (Figure 1). 

Arachadonic and Linoleic acid were present in much higher concentrations in 

the cultured samples, probably due to their presence in the broodstock diet 

being used. Based on EPA and DHA changes, an experiment was designed 

to test survival of larvae on diets, both live and manufactured. The diets 

contain different levels of EPA and DHA, and performance of larvae and 

efficacy of the diets was measured by percent survival. 

For the first feeding trial (using larvae from the Winter Group spawn), 

all treatments were stocked into their containers on April 29th, 2004. Feeding 

did not begin until May 1st, when it could be determined that the larvae had 

opened their mouths. By Day 9 of the trial, all larvae in the treatments 

receiving the EZ-Larvae diet had died. By Day 14 of the trial, all larvae in the 

treatments receiving the live foods that had not been enhanced had died, and 

only the treatments receiving enriched live foods remained. At the end of the 

21 day trial, only 17 of the initial 900 stocked into the enriched foods 

treatment survived (0.0189% survival). 

For the second feeding trial (using larvae from the Spring Group’s 

second spawn), all treatments were stocked into their containers on May 24th, 

2004. Feeding began on May 26th, once it was determined that the larvae had 
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opened their mouths. By Day 12 of the trial, all larvae in the treatments 

receiving the EZ-Larvae diet had died. On Day 17 of the trial, all larvae in the 

treatments receiving the enriched live foods and all larvae in the treatments 

receiving normal live foods had died. 

An analysis of variance (ANOVA) was performed on the survival data 

from Days 7, 14, and 21 to check for differences between the three 

treatments (Table 2). There was no difference detected between any of the 

treatments in the first week of the experiment. It was found that the larvae fed 

the un-supplemented live foods and the live foods enriched with Aquagrow 

had significantly higher survival on Day 14 and on Day 21 than the larvae fed 

the EZ-Larvae diet. It was also found that the larvae fed live foods enriched 

with Aquagrow, while not showing significantly higher survival during the first 

two weeks, did have significantly greater survival over the entire 21 day 

experiment.  
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Enriched Food (N=1800) EZ-Diets (N=1800)

Day F P F P

7 - - - -

14 - - 2091.445 .000*

21 1266.232 .000 2086.084 .000*

Table 2: Results of ANOVA Comparing Enriched Foods & EZ-Diets to Natural 

Live Foods. *Survival of EZ-Diet treatments was statistically significantly less 

than survival of control treatments.
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Chapter 4: Discussion

Despite repeated mechanical problems that interfered with the 

experimental conditions influencing the reproductive condition and activity of 

yellow perch, the results of this study show that off-season spawning of 

yellow perch through temperature and photoperiod manipulation can be used 

to produce fingerlings year round. If the “seasons” are shifted out of phase, 

rather than being accelerated or condensed, yellow perch will complete 

vitellogenesis and are capable of producing viable gametes (Figure 3 and 

Figure 4). 

Kolkovski and Dabrowski (1998) used a similar methodology, but 

shifted the perch reproductive cycle out of phase by 6 months rather than the 

3 month shifts used in this study. Multiple shifts at intervals of 3, 6, and 9 

months would be the preferred technique in that it would potentially provide 

four crops of fingerlings each year compared to the only two crops per year 

allowed by a 6 month shift. Kolkovski and Dabrowski (1998) did report 

success with a 60 day “winter” conditioning period compared to the 90 day 

and then 120 day conditioning periods used here. It may be the case that 

seasonal shifts of more or less than the 6 month shift performed by Kolkovski 

and Dabrowski (1998) require conditioning periods of differing lengths to be 

successful. Further investigations and trials could reveal the optimum 

conditioning period duration for seasonal shifts of different magnitudes.  In 

addition to the duration of the conditioning period, the rate of temperature 

change applied when shifting the water temperature from one “season” to 
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Figure 3: Number of egg ribbons released by females in all spawning groups 

after the water temperature reached 14º C. 
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the same rate, while the groups with poor spawning success (Summer and 

Spring(2) ) have lower profiles. 
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another is of critical importance. Summer Group, which experienced the 

poorest spawning activity in this study (Figure 4), had a rate of temperature 

decline (~1°C  per 1.3 days) more rapid than the other spawning groups 

(~1°C per 5 days). This difference in the rate of cooling may have been 

responsible for the lack of spawning activity in that group. 

Two of the spawning groups, Summer and Spring(2), produced 

substantially fewer egg ribbons than the rest of the groups. These two groups 

also experienced the most dramatic disturbances to their chilled periods due 

to chiller failures. The first chiller failure affected Summer Group early in the 

winter conditioning period, and while the disturbance only lasted for 5 days, 

the fish apparently did not recover and spawning activity was severely 

diminished. The second chiller failure affected both Winter Group and Spring 

Group(2) and the differences between this event  and the first chiller failure 

were twofold. First, both groups had nearly completed their winter 

conditioning periods. Dabrowski et al. (1996) stated that female yellow perch 

in the late stages of oocyte development seem to be resistant to photothermal 

manipulation. Second, Winter Group was returned to winter conditions after 

only 2 days while Spring Group(2) was forced to wait 11 days for winter 

conditions to be restored. The result of these differences was that Winter 

Group made a complete recovery after the chiller failure and spawned 

normally. Spring Group(2) experienced a delayed and diminished recovery 

and while it did produce more egg ribbons than Summer Group, it did not 

perform as well as Winter Group (Figure 4). It appears from these three cases 
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that a prolonged interruption of the winter conditioning period, or an 

interruption early in the winter conditioning period is capable of substantially 

disrupting the spawning ability of yellow perch under photothermal 

manipulation. 

While the fish in this study did spawn and produce viable eggs, there 

were problems that would need to be addressed before these techniques 

could be successfully applied in a commercial aquaculture setting. First, the 

egg ribbons that were produced by fish in the experimental system were pale 

in color and were not as strong or elastic as ribbons collected in the wild 

(Figure 2). They often appeared in clumps rather than a single cohesive 

strand. While wild egg ribbons are relatively tough and difficult to tear, the 

ribbons from this study were easily damaged by nets and drain suction.

Similar ribbons have been described in the Severn River near Annapolis, MD 

where perch recruitment has been poor since 1996 (S. Minkkinen, Maryland 

DNR; personal communication, June 3, 2003). It is possible that these “weak” 

ribbons are not as likely to be fertilized by male perch and that is having an 

impact on the ability of the perch population in that river system to recruit. 

Perch egg ribbons in this condition were also described in a conversation with 

Dr. Konrad Dabrowksi (February 18, 2004) who has studied yellow perch 

reproduction and indicated that despite the weak appearance of these ribbons 

and infrequent “in-tank” fertilization, these eggs were, in fact, viable. He 

recommended the use of HCG injections to synchronize the reproductive 

development of males and females, coupled with standard strip spawning 
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techniques to assure fertilization. While more successful, this technique 

requires specialized training and is time and labor intensive. Although Dr. 

Dabrowski and others report increased success using hormone injection, this 

step is not required for successful fertilization. In fact, most of the females in 

this study that were injected with HCG or LHRH released their eggs before 

we attempted to strip spawn them, and the eggs remained unfertilized. By 

closely observing the reproductive condition of the un-injected females it was 

possible to strip spawn them and fertilize the eggs manually using milt 

extracted from the males. In all groups there were always ripe males present 

during the spawning periods that could be used to perform this type of 

fertilization. 

It is also possible that while viable, embryos from these weakened 

ribbons could be physiologically deficient and unable to develop into healthy 

adult fish. So, while off season spawning may appear to remove a bottleneck 

in commercial yellow perch production by potentially increasing the supply of 

available fingerlings, poor larvae and fingerling development may present 

another challenge. While this study could not identify weak egg ribbons as the 

sole cause of poor fertilization, they may contribute to the problem. Further 

investigation into the cause of this “weak ribbon syndrome” could help avoid 

the problem all together. The cause could be related to stress or diet of the 

broodstock, or some other variable between natural and artificial 

environments. Any investigation attempting to uncover the cause(s) would 

need to be able to produce healthy, normal egg ribbons, as well as to 
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deliberately produce weak, clumpy ribbons so that the precise cause could be 

identified and corrected. 

Brood fish diets play an important role in the reproductive development 

of the brood fish and the success of their eggs and larvae. The formulations 

of those diets dictate what fatty acids and other nutrients are present in the 

ova to be passed into the egg yolk during vitellogenesis. The literature 

indicates that in other species of coolwater fish, DHA and EPA are the most 

critical fatty acids for healthy embryonic and larval development (Sargent et 

al.,1999; Copeman et al.,  2002; Harel & Place 2003). The broodstock diets 

currently in use by yellow perch producers were similar to the diet used in this 

study. Because the egg samples recovered from the cultured brood fish were 

higher in essential fatty acids than those collected from the wild, the diet used 

in this study seems to contain sufficient amounts of these fatty acids to allow 

for successful spawning and development. Performance of the brood fish 

(and their eggs and larvae) may be improved by more advanced diet 

formulations, but that was not a target of this investigation and specific 

improvements cannot be implied from this data. 

The feeding trial conducted on the larvae spawned from Winter Group 

and Spring Group (2) provided data that led to the following conclusions 

about larval nutrition in yellow perch. First, some percentage of yellow perch 

larvae will survive on the commonly used live foods (rotifers and Artemia

nauplii) but enriching these food items with a product such as AquaGrow has 

been shown by this experiment to significantly improve survival. While 
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existing formulations for broodstock diets may enable female yellow perch to 

provide their eggs with adequate concentrations of DHA and EPA, newly 

hatched yellow perch larvae need to quickly find another source of these 

essential fatty acids and un-supplemented live foods may not be sufficient. 

Further investigation may reveal that AquaGrow or other enrichment products 

high in DHA could improve larval growth rates. 

Second, without a readily consumable food source high in DHA and 

EPA, yellow perch larvae will starve and suffer high mortality once the yolk 

sac is consumed. Analysis of the results of this feeding trial indicates that the 

liquid EZ-Larvae diet, produced by Ziegler Brothers (Garners, PA), resulted in 

the lowest survival. When examining samples of larvae under a dissecting 

microscope, there were never any particles of EZ-Larvae present in the gut of 

fish from that treatment, and heavy mortality occurred in all of the EZ-larvae 

replicates. While Ziegler Brothers did not provide the precise formulations of 

the EZ-Diets, they are high in both DHA and EPA. It is possible that the 

yellow perch larvae did not recognize it as a food item, or that they did not 

find the product palatable. Because this species of fish is not domesticated, it 

is also possible that they rely on a predatory instinct that requires they be 

offered only live and mobile food items. If this were the case it is possible that 

they could be weaned onto the EZ-Diets, reducing the amount of time they 

required live food and possibly eliminating the feeding of Artemia nauplii. 

Further investigation is warranted given the practical and nutritional benefits 
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of using a manufactured diet in both commercial and research aquaculture 

settings. 

In conclusion, the results of this study indicate that off-season 

spawning of yellow perch is a possible technique that could be implemented 

by producers to produce multiple batches of larvae. This is despite the 

increased degree of difficulty compared to off-season spawning techniques of 

other species such as channel catfish (Kelly & Kohler 1996) and hybrid 

striped bass (Tate & Halfrich 1998). There should, however, be further study 

into the issue of poor egg quality that has been described here. Until that 

issue is resolved, producers would be well advised to continue using pond 

techniques to spawn yellow perch. Producers that raise larvae in hatcheries 

can expect to see an increased percent survival by introducing live food 

enrichment into their larval diets. Liquid formulations and refined techniques 

for using such diets may be practical in the future but are not yet suitable for 

newly hatched yellow perch larvae. 
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